Bifurcation of limit cycles in a quintic Hamiltonian system under a sixth-order perturbation

نویسندگان

  • S. Wang
  • P. Yu
چکیده

This paper intends to explore the bifurcation of limit cycles for planar polynomial systems with even number of degrees. To obtain the maximum number of limit cycles, a sixth-order polynomial perturbation is added to a quintic Hamiltonian system, and both local and global bifurcations are considered. By employing the detection function method for global bifurcations of limit cycles and the normal form theory for local degenerate Hopf bifurcations, 31 and 35 limit cycles and their configurations are obtained for different sets of controlled parameters. It is shown that: H(6) P 35 = 6 1, where H(6) is the Hilbert number for sixth-degree polynomial systems. 2005 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Improved Lower Bound on the Number of Limit Cycles Bifurcating from a quintic Hamiltonian Planar Vector Field under quintic Perturbation

The limit cycle bifurcations of a Z2 equivariant quintic planar Hamiltonian vector field under Z2 equivariant quintic perturbation is studied. We prove that the given system can have at least 27 limit cycles. This is an improved lower bound on the possible number of limit cycles that can bifurcate from a quintic planar Hamiltonian system under quintic perturbation.

متن کامل

Bifurcation of limit cycles from a quadratic reversible center with the unbounded elliptic separatrix

The paper is concerned with the bifurcation of limit cycles in general quadratic perturbations of a quadratic reversible and non-Hamiltonian system, whose period annulus is bounded by an elliptic separatrix related to a singularity at infinity in the poincar'{e} disk. Attention goes to the number of limit cycles produced by the period annulus under perturbations. By using the appropriate Picard...

متن کامل

The Number and Distributions of Limit Cycles for a Class of Quintic Near-Hamiltonian Systems

This paper concerns with the number of limit cycles for a cubic Hamiltonian system under cubic perturbation. The fact that there exist 9–11 limit cycles is proved. The different distributions of limit cycles are given by using methods of bifurcation theory and qualitative analysis, among which two distributions of eleven limit cycles are new.  2005 Elsevier Inc. All rights reserved.

متن کامل

Limit cycle analysis on a cubic Hamiltonian system with quintic perturbed terms

This paper intends to explore bifurcation behavior of limit cycles for a cubic Hamiltonian system with quintic perturbed terms using both qualitative analysis and numerical exploration. To obtain the maximum number of limit cycles, a quintic perturbed function with the form of R(x, y, λ) = S(x, y, λ) = mx2 + ny2 + ky4 − λ is added to a cubic Hamiltonian system, where m, n, k and λ are all varia...

متن کامل

Bifurcation of Limit Cycles in a Cubic Hamiltonian System with Perturbed Terms

Bifurcation of limit cycles in a cubic Hamiltonian system with quintic perturbed terms is investigated using both qualitative analysis and numerical exploration. The investigation is based on detection functions which are particularly effective for the perturbed cubic Hamiltonian system. The study reveals firstly that there are at most 15 limit cycles in the cubic Hamiltonian system with pertur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005